Calculus with Parametric Curves

- Horizontal tangents: \$\frac{dy}{dt} = 0\$, when \$\frac{dx}{dt} \neq 0\$
 Vertical tangents: \$\frac{dx}{dt} = 0\$, when \$\frac{dy}{dt} \neq 0\$
- Multiple tangents may occur at a point
- 1. $x(t) = 4\cos(t)$, $y(t) = 3\sin(t)$, $[0,2\pi]$, find $\frac{dy}{dx}$ and the equation for the slope of the tangent line.

A)	x(t)=4cos(t) y(t)=3sin(t) [0,2n]
1 19	x'(t):-4sin(t) y'(t):3cos(t)
	$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{3\cos(t)}{-4\sin(t)} = \frac{3}{4}\cos(t)$
B)	m= dy = - \frac{4}{1} = - \frac{4}{4} \cot \left(\frac{1}{4}\right) = - \frac{3}{4} \sqrt{3} = - \frac{3}{4} \sqrt{3} = - \frac{3}{4}
	$x(\Xi)=4\cos(\Xi)=4(\Xi)=2\sqrt{3}(2\sqrt{3},\Xi)$ $y(\Xi)=3\sin(\Xi)=3(\Xi)=\Xi$
	y-y=m(x-x,) = point slope y-===-3\frac{3}{4}(x-2\frac{1}{2})=-\frac{3\frac{1}{2}}{4}x+\frac{5\frac{1}{2}}{4}-\frac{2\frac{1}{2}}{4}x+\frac{1}{2}=-\frac{3\frac{1}{2}}{4}x+\frac{1}{2}=-3\frac

2. $x(t) = t^3 - 3t$, $y(t) = 3t^2 - 9$, find t=0 and t=1, find the tangents.

x(t): t3-3t + y(t): 3t2-9
t=0=x(0)=0 y(0)=-9 t=1=x(1)=-2 y(1)=-6
A) ay let 3 = 3(121) - 2t (141)(11)
dy is undefined @ {=- , t=1: x(1)=-2 (-2,-6) }
t=1: x(1)=-2 (-2,-6) } vertical largents t=-1: x(-1)=2 (2,-6) }
B) dy = 0 = 2t = 0 = 2t = 0 = 1=0
$t:0: x(0):0$ $(0,-9) \rightarrow horizontal tangent$
C) x(t)=t3-3t=0=t(t2-5)=0=10+±53 y(t)=3t2-9=0=+2=3=+t=±53
$(0,0) \rightarrow t = -\sqrt{3} + \sqrt{3}$ $\frac{dq}{dx} = \frac{2t}{t^2-1}$ $t = -\sqrt{3}$: $m = \frac{2(-\sqrt{5})}{(-\sqrt{3})^2-1} = \frac{-2\sqrt{5}}{5-1} = \frac{-2\sqrt{5}}{2}$ $m = -\sqrt{5}$
t-13: m= 253 = 253 = +13 (0,0)
y= mx+b y= \(\sqrt{3} \times \text{y} = -\sqrt{3} \times